If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-8x-51=0
a = 2; b = -8; c = -51;
Δ = b2-4ac
Δ = -82-4·2·(-51)
Δ = 472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{472}=\sqrt{4*118}=\sqrt{4}*\sqrt{118}=2\sqrt{118}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{118}}{2*2}=\frac{8-2\sqrt{118}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{118}}{2*2}=\frac{8+2\sqrt{118}}{4} $
| 7a-32=1 | | 20+2x=3(4x+3) | | 6x+194=14x-6 | | (x+1)/2=x-1 | | 8=x+1 | | 2/3(9p-15)=8 | | 1.44=3.2(1.44)(x-1.2) | | 3(x+5)=23+x | | C=4.50x+3000 | | 28=0.4(25+15w) | | 1x-7=5x-23 | | 0.4p=–9 | | 4(3y-4)=3y+29 | | (2x-8)/6=-4 | | 8=4x+28 | | x/4+7=21 | | 0.25(20-12h)=14 | | (12-2)/4=x | | 3x+5x+4=-12 | | 10x-(7x-9)=24 | | 8/3c=-9/5 | | 12-2/4=x | | (x-8)/7=6 | | -22x2(x=10) | | 8=6(3x+2) | | t–34=–15 | | 24=2x/6+π | | x+5/7=2-x+5/4 | | 6n-5=9 | | 6x+9=7x–5 | | C=4.50x=3000 | | -1/2(6+10q)=17 |